
Project objectives 
 

1. Elaboration and development of integral and hybrid methods for solving the electromagnetic field 
problems within structures with moving parts and non-linear media. 

 

1.1. The hybrid methods FEM-BEM. A FEM mesh is created only in the ferromagnetic bodies and those were 
eddy currents are induced; the boundary condition is a mix one and it is given by the rigidity matrix that results from 
Boundary Elements Method (BEM). The movement is reflected only on the boundary condition. For 2D structures 
the integral equation of vector potential on the boundary is:  
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boundary of the ferromagnetic bodies; α is the solid angle that a small vicinity of  ∂Ω can be seen from the 
observation point; r, r’  are the position vectors of the observation point and source point, respectively; R = r - r’; n’   
is the unit normal external vector; 0A  is the vector potential given by external field sources. On ferromagnetic 
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ΩJdkϕ , k=1,2,...,N ....(3’). Between the tangential components of the magnetic field strength (derivatives of 

potential on the normal direction) from inner and outer domain there is the following relation: 
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...(4). The boundary is approximated with a polygonal line; on this boundary the variation of the potential is linear and 
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∂ν  is constant. The numerical form of the integral equation is:  ( ) 0AAA =+ tt WrotZ ...(5) that, together with 

the conditions and equation (3) form the equation system from FEM-BEM hybrid procedure.  

The credibility of the methods results from the fact that a part of the results have been already 
published or presented within scientific conferences /6/, /7/.  

Comparing to FEM, some of the great advantages of the procedure presented above are: structures 
with moving bodies can be considered; there are not parasite forces in the air (where the equations of the 
magnetic field are exactly verified); it is not necessary to introduce an artificial boundary; the mesh is 
created only on the ferromagnetic domains.  

The matrix of the equations system has some disadvantages: great dimensions, it loses from the property of 
rare matrix specific to FEM methods (the lines associated to the boundaries are full) and it is not symmetrical. We 
propose an iterative method for solving the equations system:  
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- the field problem on the shield is solved, having boundary Dirichlet conditions. The matrix of the system is well 
conditioned, being rare, symmetrical and diagonal dominant. Rare matrix techniques can be used.  

- after solving the filed problem inside the shield, we obtain the values 
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corrected for the outer problem using the relation (4). 

In the 3D case, we propose a new integral equation: 
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for the interior FEM procedure. Edge elements and the condition for topological calibration are used. 

Comparing to FEM, some of the great advantages of the procedure presented above are: structures 
with moving bodies can be considered; there are not parasite forces in the air (where the equations of the 
magnetic field are exactly verified); it is not necessary to introduce an artificial boundary; the mesh is 
created only on the ferromagnetic domains.  

1.2. The integral equation for eddy currents. We propose the use of the local reference systems that are 
attached to the moving parts, where the local form for law of  electromagnetic induction within immobile media is 

valid and we can write: ∫ +−=
t
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AE τ . Outside the conductive bodies domains, the stationary state is valid 

and the B-S-L formulae can be applied. In 2D cases, where we have bodies with polarizations, we propose a new 
form of the integral equations for eddy currents: 
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by the external field sources and M is the magnetization that can come from the polarization method, when we have 

non-linear ferromagnetic media, and ∫=
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time. Volume elements are used (or surface elements, in the 2D models).  

In 3D structures, we propose the equation:  
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integral equation is projected on the functions krotN , eliminating, in this way, the potential V. 

1.3.  Approaching the non-liniarities. The ferromagnetic media, with the constitutive relation H = F(B) are 
replaced by linear media with the constitutive relation B = μ(H + M).  The magnetizations M are iteratively 
corrected as a function of the magnetic flux B. For the computational medium the magnetic permeability μ = μ0 can 
be chosen. The medium being linear and homogenous from the magnetic point of view, solving an electromagnetic 
field problem can be done, within one iteration, through the solution of the integral equation of the current density. 
The reference systems of the moving bodies are used. The magnetization M appears in the free term of the integral 
equation. The nuclei of these integral equations are time-functions.  

 

2. The computation of the forces 

The magnetic force is calculated using the formula: ( ) dAB
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integration Σ surrounds the referring body. We denote Jk the uniform current density from the conductive sub-
domain k, k=1,...,nC  and Mk  the uniform magnetization from the polyhedral ferromagnetic sub-domain ωk, 
k=1,...,nF. We ca apply B-S-L formulae and we obtain the new relations:  
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terms Akj,Ckj si Dj must be recalculated, namely those terms that refer to the surfaces S and conductive or 
ferromagnetic bodies that moves one towards others. For electrical forces, such as those forces that appear in the 
trajectories of the electron fascicles or in the electrical separators, the formulae of the local densities of the forces 
can be used.  

3. Solving the equation of dynamic equilibrium  

The electromagnetic force is deduced if we solve a more complicated problem of quasi-stationary electromagnetic 
field. The solution of the field problem depends on the velocity and position of the body. Almost every time more 
degrees of freedom must be taken into consideration. The problem is, thus, non-linear and a numerical algorithm for 
solving it implies the insurance of the stability conditions of the procedure.  

Further on we present a modality of approaching this objective. Let us admit a simple case with one degree 

of freedom and without mechanical frictions. The equation of dynamic equilibrium is: ),( vxF
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the fact that the conductive domanins where divided in n tetrahedral sub-domains ωk where the current density Jk is 

supposed to be constant, we have: ∑
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average value of the force on the time interval [t,t+Δt]: ∫
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[t,t+Δt] the movement is an uniform accelerated one and known at the iteration (p), the current density can be 
calculated with the hypothesis of an imposed trajectory. The time-step used to determine the current density is 
different from that one used in the equation of dynamic equilibrium. A Crank-Nicholson procedure can be used.  

4. The stability of the trajectory 

If we want to study the global stability with respect to the normal trajectory, then we have to produce a 
perturbation at any moment, that mean to add a force that acts for a short time to the right part of the equation (7) 
and to find that the new trajectory tends asymptotical to the normal one (Fig. 1).  

 

Traiectorie deviata 

Traiectorie normala 

Fig.1. Pentru stabilitatea traiectoriei Fig. 1 For stability of the trajectory

Normal trajectory 

Deviated trajectory 

 
A lot of complex problems regarding trajectories should be solved. A substantial simplification of the 

analysis of trajectory stability can be done, analyzing the local stability. At one point of the trajectory, supposed to 
be known, an arbitrary small deviation from the trajectory can be done and, supposing that we have the same 
velocity, the electromagnetic force is determined. If this force tends to bring back the body on the normal trajectory 
then we say that we have local stability. For instance, for the electromagnetic force we have the relation: 
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trajectory. The integral equation of the current density difference is:  
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If the small deviation from the normal trajectory is made on the direction u, then   δd=uδs. In the relations from 
above the small variation are replaced by the derivatives with respect to s. 
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. The settlement of the above equation is done on the small time interval [t,t+σ]. For 

simplicity, we supposed that the media is linear, so the magnetization M is missing. 

 

 

Methodology of the research 
The project will be focused on five directions of fundamental research: 1) Elaboration and development of integral 
and hybrid methods to solve the electromagnetic field problem. Structures with moving parts and non-linear media 
will be also considered. Stationary problems of electric and magnetic field and eddy currents problems will be 
solved. Formulae and procedures for electromagnetic field computation in the air, where the field is continuous and 
undefined derivable, will be established.  

Choosing simple structures, where the analytical solution can be found, the obtained solutions can be verified. 2) 
Methods of electromagnetic forces computation using the results of integral and hybrid equations. The flux of 
Maxwell tensor is used when we determine the magnetic forces exerted on the moving parts or the local forces 
formulae are used when we determine the trajectories of the electrical charged particles. 3) Methods for numerical 
solution of the equations of dynamic equilibrium. Using integral or hybrid methods, the correction of the 
electromagnetic force is made without re-building the mesh 4) Methods of numerical analysis of the trajectories 
stability. 5) Algorithms and computation programs. The research team includes 3 professors with great experience 
within Electromagnetism, 2 young researchers that have recently sustained their doctoral thesis, and a PhD student. 
As a consequence, three working teams with two members will be formed, each one coordinated by a professor. 
Within the activity of these teams other young PhD students will be co-opted, but the responsibility of the research 
activity belongs to the leaders of the teams. The ordinary and extraordinary research reports will be analyzed in the 
presence of the whole 6 people’s staff, the connection between the activities of the team being the project manager 
responsibility. The results will be reported in ISI quoted magazines (at least 6 articles) and they will be 
communicated within scientific conferences with reviewers. 


